Write your message
Volume 14, Issue 1 (4-2024)                   cmja 2024, 14(1): 29-37 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

naderi A, saremi A, Afarinesh Khaki M R. The effect of 12 weeks of endurance training with sumac intake on the serum levels of nitric oxide and interleukin-1 beta in Alzheimer's male rats. cmja 2024; 14 (1) :29-37
URL: http://cmja.arakmu.ac.ir/article-1-974-en.html
1- Ph.D., Student in Exercise Physiology, Department of Physical Education, Faculty of Humanities, Islamic Azad University Borujerd Branch, Borujerd, Iran
2- Professor of Exercise Physiology, Department of Sports Science, Faculty of Physical Education, Arak University, Arak, Iran , a-saremi@araku.ac.ir
3- Associate Professor, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
Abstract:   (657 Views)
Introduction: Alzheimer's is one of the most common dementia diseases. Exercise along with antioxidant substances can prevent the progress of this condition. Therefore, the aim of this study was to investigate the effect of 12 weeks of endurance training with sumac intake on the serum levels of nitric oxide and interleukin-1 beta in Alzheimer's male rats.
Materials and methods: In this experimental study, 35 male Wistar rats were randomly divided into 5 groups (healthy control, Alzheimer's, Alzheimer's with endurance exercise, Alzheimer's with sumac, Alzheimer's with endurance exercise and sumac ). In order to induce Alzheimer's disease, 8 mg of trimethyl tin chloride was injected. Sumac powder was used at a ratio of 10%. Endurance swimming exercises in water were 5 days a week and lasted 15 to 60 minutes in each session. 48 hours after the last training session, interleukin-1 beta and nitric oxide serum levels were measured by ELISA method. The data were analyzed by one-way ANOVA and Dunnett's test at a significance level of P<0.05.
Findings: The level of interleukin-1 beta in the sumac + endurance training group was lower than the other groups, and the nitric oxide levels in the sumac and endurance training group were significantly higher than the Alzheimer's group (P=0.001). However, the amount of nitric oxide in the sumac group with endurance training was not significantly different from the healthy group (P<0.05).
Conclusion: The results suggest that endurance exercise and taking sumac is associated with the improvement of inflammatory factors and the combination of these two interventions leads to a doubling of the improvement.
 
Full-Text [PDF 703 kb]   (362 Downloads) |   |   Full-Text (HTML)  (283 Views)  
Type of Study: Research | Subject: Physiology

References
1. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer's disease. The Lancet. 2021;397(10284):1577-90. [doi:10.1016/S0140-6736(20)32205-4] [pmid:33667416]
2. Murdock MH, Tsai L-H. Insights into Alzheimer's disease from single-cell genomic approaches. Nat Neurosci. 2023;26(2):181-95. [doi:10.1038/s41593-022-01222-2] [pmid:36593328]
3. Thies W, Bleiler L. Alzheimer's disease facts and figures. Alzheimers Dement. 2011;7(2):208-44. [doi:10.1016/j.jalz.2011.02.004] [pmid:21414557]
4. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018;141(7):1917-33. [doi:10.1093/brain/awy132] [pmid:29850777]
5. McCarty MF, DiNicolantonio JJ, Lerner A. A fundamental role for oxidants and intracellular calcium signals in Alzheimer's pathogenesis-and how a comprehensive antioxidant strategy may aid prevention of this disorder. Int J Mol Sci. 2021;22(4):2140. [doi:10.3390/ijms22042140] [pmid:33669995]
6. Tohma H, Altay A, Köksal E, Gören AC, Gülçin İ. Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria): analysis of its phenolic compounds by LC-MS/MS. Journal of Food Measurement and Characterization. 2019;13:1607-19. [doi:10.1007/s11694-019-00077-9]
7. Austin SA, Santhanam AV, Hinton DJ, Choi DS, Katusic ZS. Endothelial nitric oxide deficiency promotes alzheimer's disease pathology. J Neurochem. 2013;127(5):691-700. [doi:10.1111/jnc.12334] [pmid:23745722]
8. Tan XL, Xue YQ, Ma T, Wang X, Li JJ, Lan L, et al. Partial enos deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24. [doi:10.1186/s13024-015-0020-0] [pmid:26104027]
9. Hanger DP, Hughes K, Woodgett JR, Brion JP. Anderton BII. Glycogen synthase kinase-3 induces alzheimer's disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 1992;147(1):58-62. [doi:10.1016/0304-3940(92)90774-2] [pmid:1336152]
10. Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Involvement of aberrant glycosylation inphosphorylation of tau by cdk5 and gsk-3beta. FEBS Lett. 2002;530(1-3):209-14. [doi:10.1016/S0014-5793(02)03487-7] [pmid:12387894]
11. Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem. 2006;281(35):25457-65. [doi:10.1074/jbc.M603469200] [pmid:16803897]
12. Fagone P, Mangano K, Martino G, Quattropani MC, Pennisi M, Bella R, et al. Characterization of Altered Molecular Pathways in the Entorhinal Cortex of Alzheimer's Disease Patients and In Silico Prediction of Potential Repurposable Drugs. Genes (Basel). 2022;13(4):703. [doi:10.3390/genes13040703] [pmid:35456509]
13. Hashem MM, Esmael A, Nassar AK, El-Sherif M. The relationship between exacerbated diabetic peripheral neuropathy and metformin treatment in type 2 diabetes mellitus. Sci Rep. 2021;11(1):1940. [doi:10.1038/s41598-021-81631-8] [pmid:33479439]
14. Fu WY, Wang X, Ip NY. Targeting neuroinflammation as a therapeutic strategy for Alzheimer's disease: mechanisms, drug candidates, and new opportunities. ACS chemical neuroscience. 2018;10(2):872-9. [doi:10.1021/acschemneuro.8b00402]
15. Maldonado M, Romero-Aibar J, Calvo J. The melatonin contained in beer can provide health benefits, due to its antioxidant, anti-inflammatory and immunomodulatory properties. J Sci Food Agric. 2023;103(8):3738-47. [doi:10.1002/jsfa.12179] [pmid:36004527]
16. Wang T, Wang Z, Cao J, Dong Y, Chen Y. Melatonin prevents the dysbiosis of intestinal microbiota in sleep-restricted mice by improving oxidative stress and inhibiting inflammation. Saudi J Gastroenterol. 2022;28(3):209-17. [doi:10.4103/sjg.sjg_110_21] [pmid:35259859]
17. Sinyor B, Mineo J, Ochner C. Alzheimer's Disease, Inflammation, and the Role of Antioxidants. J Alzheimers Dis Rep. 2020;4(1):175-83. [doi:10.3233/ADR-200171] [pmid:32715278]
18. Ardura-Fabregat A, Boddeke EW, Boza-Serrano A; Brioschi, S.; CastroGomez, S.; Ceyzériat, K.; Dansokho, C. et al. Targeting neuroinflammation to treat Alzheimer's disease. CNS Drugs. 2017;31(12):1057-82. [doi:10.1007/s40263-017-0483-3] [pmid:29260466]
19. Yu F, Nelson NW, Savik K, Wyman JF, Dysken M, Bronas UG. Affecting Cognition and Quality of Life via Aerobic Exercise in Alzheimer's Disease. West J Nurs Res. 2013;35(1):24-38. [doi:10.1177/0193945911420174] [pmid:21911546]
20. Calis Z, Mogulkoc R, Baltaci AK. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev Med Chem. 2020;20(15):1475-1488. [doi:10.2174/1389557519666190617150051] [pmid:31288717]
21. Fišar, Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules. 2022;12(11):1676. [doi:10.3390/biom12111676] [pmid:36421690]
22. Noura M, Arshadi S, Zafari A. Banaeifar A. The effect of running on positive and negative slopes on TNF-a and INF- y gene expression in the muscle tissue of rats with Alzheimer's disease. J Bas Res Med Sci. 2020;7(1):35-42
23. Quillfeldt JA. Behavioral methods to study learning and memory in rats. Rodent Model as Tools in Ethical Biomedical Research. 2016;271-311. [doi:10.1007/978-3-319-11578-8_17]
24. Nagib R. Hypolipidemic effect of sumac (Rhus coriaria L) fruit powder and extract on rats fed high cholesterol diet. Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. 2017;50(1):119-43. [doi:10.21608/bnni.2017.6726]
25. Stanojevic D, Jakovljevic V, Barudzic N, Zivkovic V, Srejovic I, Parezanovic Ilic K, et al. Overtraining does not induce oxidative stress and inflammation in blood and heart of rats. Physiol Res. 2016;65(1):81-90. [doi:10.33549/physiolres.933058] [pmid:26596327]
26. Wang DM, Li SQ, Wu WL, Zhu XY, Wang Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer's disease. Neurochem Res. 2014;39(8):1533-43. [doi:10.1007/s11064-014-1343-x] [pmid:24893798]
27. Chen WW, Zhang X, Huang WJ. Role of physical exercise in Alzheimer's disease. Biomed Rep. 2016;4(4):403-7. [doi:10.3892/br.2016.607] [pmid:27073621]
28. Jensen CS, Bahl JM, Østergaard LB, Høgh P, Wermuth L, Heslegrave A, et al. Exercise as a potential modulator of inflammation in patients with Alzheimer's disease measured in cerebrospinal fluid and plasma. Exp Gerontol. 2019;121:91-8. [doi:10.1016/j.exger.2019.04.003] [pmid:30980923]
29. Nichol KE, Poon WW, Parachikova AI, Cribbs DH, Glabe CG, Cotman CW. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J Neuroinflammation. 2008;5:13. [doi:10.1186/1742-2094-5-13] [pmid:18400101]
30. Gomes da Silva S, Simões PSR, Mortara RA, Scorza FA, et al. Exercise-induced hippocampal anti-inflammatory response in aged rats. J Neuroinflammation. 2013;10:61. [doi:10.1186/1742-2094-10-61] [pmid:23663962]
31. Barrientos RM, Frank MG, Crysdale NY, Chapman TR, Ahrendsen JT, Day HE, et al. Little exercise, big effects: reversing aging and infection- induced memory deficits, and underlying processes. J Neurosci. 2011;31(32):11578-86. [doi:10.1523/JNEUROSCI.2266-11.2011] [pmid:21832188]
32. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. TheEffects of Exercise on Cognition in Parkinson'sdisease: A SystematicReview. Transl Neurodegener. 2014;3(1):5. [doi:10.1186/2047-9158-3-5] [pmid:24559472]
33. Harry GJ, Kraft AD. NeuroinflammationandMicroglia:Considerations and Approaches forNeurotoxicity Assessment. Expert Opin Drug Metab Toxicol. 2008;4(10):1265-77. [doi:10.1517/17425255.4.10.1265] [pmid:18798697]
34. Al-Jarrah M, Obaidat H, Bataineh Z, Walton L, Al-Khateeb A. Endurance Exercise Training Protects against the Upregulation of Nitric Oxide in the Striatum of MPTP/Probenecid Mouse Model of Parkinson's disease. Neurorehabilitation. 2013;32(1):141-7.
35. Ribarič S. Physical exercise, a potential non-pharmacological intervention for attenuating neuroinflammation and cognitive decline in Alzheimer's disease patients. Int J Mol Sci. 2022;23(6):3245. [doi:10.3390/ijms23063245] [pmid:35328666]
36. Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide. 2023;134-135:23-37. [doi:10.1016/j.niox.2023.03.003] [pmid:37019299]
37. Mohammadi R, Fathei M, Hejazi K. Effect of eight-weeks aerobic training on serum levels of nitric oxide and endothelin-1 in overweight elderly men. Iranian Journal of Ageing. 2018;13(1):74-85. [doi:10.21859/sija.13.1.74]
38. Eskandari Z, Ebrahimi F, Arazi H. Comparison of a Course of Aerobic Exercise with Hydro-Alcoholic Extracts of Indian Valerian and Lemon Balm Plants on Changes in Serotonin Levels and Headache Indices in Women with Chronic Tension-Type Headache. International Journal of BioLife Sciences. 2022; 1(3): 190-99. [doi:https://doi.org/10.22034/jbs.2022.162522]
39. Azevedo CV, Hashiguchi D, Campos HC, Figueiredo EV, Otaviano SFSD, Penitente AR, et al. The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer's disease. Front Neurosci. 2023;17:1131214. [doi:10.3389/fnins.2023.1131214] [pmid:36937673]
40. Pourahmad J, Eskandari MR, Shakibaei R, Kamalinejad M. A search for hepatoprotective activity of aqueous extract of Rhus coriaria L. against oxidative stress cytotoxicity. Food Chem Toxicol. 2010;48(3):854-8. [doi:10.1016/j.fct.2009.12.021] [pmid:20036300]
41. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Farbood Y, Sarkaki A, Bavarsad K. Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacology Biochemistry and Behavior. 2013;111:90-6. [doi:10.1016/j.pbb.2013.09.002]
42. Kosar M, Bozan B, Temelli F, Baser KH. Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food chemistry. 2007;103(3):952-95. [doi:10.1016/j.foodchem.2006.09.049]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Complementary Medicine Journal

Designed & Developed by : Yektaweb